
Slide 1

SANS@Night - Mod_Security

Web Intrusion Detection And Prevention

Author: Ryan C. Barnett
Presentation: Mod_Security – An Intrusion Prevention module for Apache
Email: RCBarnett@hushmail.com
Date: Dec. 4th, 2003

Copyright © 2003 Ryan C. Barnett
 All Rights Reserved

Slide 2

SANS@Night - Mod_Security

Who Am I?
• Center for Internet Security’s Apache Benchmark Project

Team Leader
• Web Application Security Consortium (WASC) Member
• Member of SANS Top 20 Vulnerabilities Team
• SANS Instructor – Securing Apache

– Intrusion Analyst (GCIA)
– Forensic Analyst (GCFA)
– Incident Handler (GCIH)
– Unix Security (GCUX)
– Security Essentials (GSEC)

• Incident Response Team Member

This page intentionally left blank.

Slide 3

SANS@Night - Mod_Security

What Will This Presentation Cover?

• Why current network security strategies
fail to protect the web tier

• Why Firewalls, NIDS and HIDS fails
• Introducing Mod_Security
• Whisker vs. Mod_Security

– Common web attacks with Mod_Security
countermeasures

• Real Examples

This page intentionally left blank.

Slide 4

SANS@Night - Mod_Security

Updated Class Slides Available

• SANS has quarterly updates for course
content

• Unfortunately, Whitehat/Blackhat tools
and tactics are NOT on this schedule!

• I am constantly updating the live
presentation to provide current info

• Class participants can download
updated PDF slides

http://apachebenchmark.sourceforge.net/Mod_Security.zip

This page intentionally left blank.

Slide 5

SANS@Night - Mod_Security

What Will This Presentation Cover?
• Mixed Audience

– Technical – Web Admins/Security Admins
– Management – Information Security Officers

• Basic Knowledge of Unix and Web Administration
– HTTP – Web Servers

• Focus on Apache/Unix Servers (RedHat for Examples)
• Discuss many web security strategies
• Dragnet Approach

– Examples ARE real – Names/IPs have been changed or removed
• Ask Questions

– If you don’t understand an issue ask – This is YOUR class
– Q&A sessions before/after breaks

This page intentionally left blank.

Slide 6

SANS@Night - Mod_Security

This Presentation Will NOT Cover
• Operating System Security

– SANS Securing Unix – Track 6
– Securing Windows – Track 5

• Secure Coding
– Application Development
– CGI Programming

• Other Web Servers
– IIS
– iPlanet
– Many mitigation techniques apply to other web servers

• Compiling Apache Code/Modules
• Web Applications

– What is the difference between Web Application and Web Server?

This page intentionally left blank.

Slide 7

SANS@Night - Mod_Security

Example N-Tier Web App

http://www.owasp.org

In essence a Web Application is a client/server software application that interacts with users or other
systems using HTTP. For a user the client would most likely be a web browser like Internet Explorer or
Netscape Navigator; for another software application this would be an HTTP user agent that acts as an
automated browser. The end user views web pages and is able to interact by sending choices to and from
the system. The functions performed can range from relatively simple tasks like searching a local directory
for a file or reference, to highly sophisticated applications that perform real-time sales and inventory
management across multiple vendors, including both Business to Business and Business to Consumer e-
commerce, workflow and supply chain management, and legacy applications. The technology behind web
applications has developed at the speed of light. Traditionally simple applications were built with a
common gateway interface application (CGI) typically running on the web server itself and often
connecting to a simple database (again often on the same host). Modern applications typically are written in
Java (or similar languages) and run on distributed application servers, connecting to multiple data sources
through complex business logic tiers.

There is a lot of confusion about what a web application actually consists of. While it is true that the
problems so often discovered and reported are product specific, they are really logic and design flaws in the
application logic, and not necessarily flaws in the underlying web products themselves.

For this class, we will be focusing on the Presentation layer. Presentation Tiers are responsible for
presenting the data to the end user or system. The web server serves up data and the web browser renders it
into a readable form, which the user can then interpret. It also allows the user to interact by sending back
parameters, which the web server can pass along to the application. This "Presentation Tier" includes web
servers like Apache and Internet Information Server and web browsers like Internet Explorer and Netscape
Navigator. It may also include application components that create the page layout.

Slide 8

SANS@Night - Mod_Security

Discussing Security Issues
• Most of the security issues will be discussed from

both the Attacker’s and Defender’s perspectives
• Sections from my SANS@Night “Preventing Web

Site Defacements” Presentation

Discussion:
We will be taking two different approaches to discussing Web Server security issues. We
will address each concern by looking from both the Attacker’s and the Defender’s
Perspectives. Many of the demonstrations are taken directly from my “Preventing Web
Site Defacements” presentation. I am currently scheduled to give this presentation during
SANS@Night at many of the upcoming SANS Security Conferences. If you are
interested in learning more about Web Defacements, please attend this presentation.

Slide 9

SANS@Night - Mod_Security

Security Issue - Attacker

•Attacker’s Perspective In Green

•Web Site/Server Vulnerability

•What Can Be Exploited

•Scanning

•Attack Methods

•Exploit Examples

Discussion:
This slide represents the Attacker’s perspective about a particular security issue. When
you see this slide, we will be discussing reconnaissance techniques, how the vulnerability
can be exploited, as well as, showing exploit examples.

Slide 10

SANS@Night - Mod_Security

Security Issue - Defender

•Defender’s Perspective In Blue

•Mod_Security Countermeasures

•Minimize Vulnerability

•Monitoring

•Identifying

•Alerting

Discussion:
This slide will discuss the same security issue, however, this time it will be from the
Defender’s perspective. We will show how to effectively mitigate any exposures to this
attack. Our main goal is to prevent the exploit from being successful, with supplemental
goals of at least Identifying and Alerting security personnel of the attack.

Slide 11

SANS@Night - Mod_Security

Security Issue - Demonstrations

HTTP Response Header:
DEMO

Discussion:
When we see slides such as this, we will be stepping outside of the PowerPoint
presentation to actually show a live demonstration of the particular security issue. I have
two different VMWare – RedHat Linux virtual hosts running on my laptop and will use
these hosts to demonstrate the different attacks.

Slide 12

SANS@Night - Mod_Security

Security Issue - Demonstrations

Discussion:
This slide shows a screen shot of my Vmware virtual machine setup. My host OS is
Widows 2000 and my Guest OS is RedHat Linux 7.2. I also have another Vmware guest
OS server running RedHat Linux 6.2. This server will be used to demonstrate various
security issues which effect older/mis-configured versions of software.

Slide 13

SANS@Night - Mod_Security

Conventions Used

• Blinking Arrow Above Footer
• Web Links to Related Information

http://www.sans.org/cdieast03/night.php

This page intentionally left blank.

Slide 14

SANS@Night - Mod_Security

Current Network Security Strategies

• Firewalls
–Create ACLs based on

• Originating IP address
• Destination IP address
• Destination Port/Service

– Either allow/deny

• Do not usually inspect (or understand)
application level communication

• Port 80 is usually left open by default…

Most firewalls do not, for various reasons, inspect packets at the application layer. They
usually rely on packet header inspection and compare these parameters with rules bases.
This lack of application layer inspection means that firewalls cannot provide adequate
protection for Web Servers. Firewalls are utilized as the main perimeter protection tool,
meaning they effectively determine which ports into the corporate network are open or
closed. The firewall captures HTTP traffic and, typically, concentrates on analyzing the
communication parameters of the traffic. It checks the destination port, the source and
destination IP addresses, and similar other attributes. However, a firewall's weakness lies
in its inability to verify the data portion (e.g., requests) of the communication
consistently. This allows the request to appear legitimate to the firewall. When it arrives
at the Web server, it is serviced normally. However, the request may be malicious and
exploit a server vulnerability, producing undesired results.

Slide 15

SANS@Night - Mod_Security

Firewall Architecture

Web
Server DB

DB

Web app

Web
Client Web app

Web app

Web app

Firewall

This page intentionally left blank.

Slide 16

SANS@Night - Mod_Security

Current Network Security Strategies

• Network IDS
–Usually a 3rd party sniffing host
–Not implemented as an application

gateway (Snort-Inline, etc…)
– Identifies and alerts, but does not prevent

attacks
–Since it sniffs packets off the network, it

can not inspect HTTP over Secure Socket
Layer (SSL)

Intrusion Detection Systems are the next layer of defense in addition to the firewall.
They usually only detect network attacks and do not provide real time prevention.
Increasing evidence shows that Network IDS (NIDS) products have limited detection
capabilities and inherent difficulties properly identifying attack attempts. As a result,
many attacks are left undetected, and false positives are generated.

Slide 17

SANS@Night - Mod_Security

NIDS Architecture

Web
Server DB

DB

Web app

Web
Client Web app

Web app

Web app

NIDS

This page intentionally left blank.

Slide 18

SANS@Night - Mod_Security

Current Network Security Strategies
• Host IDS

–Monitors local activity on a system
–Usually one of the following:

• Checks local files for changes by creating a hash
database (Tripwire, Aide, etc…)

• An agent which monitors processes and/or log files for
signs of illegal user/daemon activity (Brute Forcing
logins, Buffer Overflow Attacks)

– Technically, a program such as SWATCH
can monitor the web server’s log files, but
it will not prevent these attacks

Slide 19

SANS@Night - Mod_Security

HIDS Strategies
./tripwire
Tripwire(tm) ASR (Academic Source Release) 1.3.1
File Integrity Assessment Software
(c) 1992, Purdue Research Foundation, (c) 1997, 1999 Tripwire
Security Systems, Inc. All Rights Reserved. Use Restricted to
Authorized Licensees.
Phase 1: Reading configuration file
Phase 2: Generating file list
Phase 3: Creating file information database
Phase 4: Searching for inconsistencies
###
Total files scanned: 10746
Files added: 1
Files deleted: 0
Files changed: 0
###
Total file violations: 1
###
added: -rwxr--r-- root 2198 Sep 24 04:13:05 2001 /etc/init.d/sendmail.old

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 20

SANS@Night - Mod_Security

New Breed of Web Tools

• Application Level Firewalls
–Raptor

• Web Shields
–AppShield (Sanctum)
– InterDo (KaVaDo)
–Ubizen DMZ/Shield (Ubizen)
–McAfee Entercept
–PitBull

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 21

SANS@Night - Mod_Security

Common Web Shield Architecture

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 22

SANS@Night - Mod_Security

Pros and Cons
• Pros

– Commercial Apps have easy installation
– Correlating data and alerts
– Able to prevent attacks since it proxies the http

requests
– Able to inspect SSL traffic since it will decrypt it first

• Cons
– Can not detect absolutely everything (0-Day

Exploits?)
– Can not always update attack signatures quickly
– $$$

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 23

SANS@Night - Mod_Security

Free Intrusion Prevention for Apache

http://www.modsecurity.org

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 24

SANS@Night - Mod_Security

Mod_Security: Features
• Request filtering; incoming requests are analyzed as they come in, and

before they get handled by the web server or other modules.

• Anti-evasion techniques; paths and parameters are normalized before
analysis takes place in order to fight evasion techniques.

• Understanding of the HTTP protocol; since the engine understands
HTTP, it performs very specific and fine granulated filtering.

• POST payload analysis; the engine will intercept the contents transmitted
using the POST method, too.

• Audit logging; full details of every request (including POST) can be logged
for later analysis.

• HTTPS filtering; since the engine is embedded in the web server, it gets
access to request data after decryption takes place.

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 25

SANS@Night - Mod_Security

Mod_Security: Features

• Anti-evasion techniques
– Remove multiple forward slash characters
– Treat backslash and forward slash characters

equally (Windows only)
– Remove directory self-references
– Detect and remove null-bytes (%00)
– Decode URL encoded characters

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 26

SANS@Night - Mod_Security

Mod_Security: Features

• Special built-in checks
– URL encoding validation
– Unicode encoding validation
– Byte range verification to detect and reject

shellcode

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 27

SANS@Night - Mod_Security

Byte Range Chart: 32-125

Discussion:
This slide shows an example ASCII code chart. In order to read the chart, you can start
in the second column and go down to the number “32” and then moved directly to the left
to the corresponding entry in the first column – “space”. The number 33 = !, 65 = A,
etc…

Slide 28

SANS@Night - Mod_Security

Mod_Security: Features
• Rules

– Any number of custom rules supported
– Rules are formed using regular expressions
– Negated rules supported
– Each container (VirtualHost, Location, ...) can have different

configuration
– Analyzes headers
– Analyzes individual cookies
– Analyzes environment variables
– Analyzes server variables
– Analyzes individual page variables
– Analyzes POST payload
– Analyzes script output

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 29

SANS@Night - Mod_Security

Mod_Security: Features
• Actions

– Reject request with status code
– Reject request with redirection
– Execute external binary on rule match
– Log request
– Stop rule processing and let the request

through
– Rule chaining
– Skip next x number of rules on match
– Pauses for a number of milliseconds

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 30

SANS@Night - Mod_Security

Mod_Security: Features

• Change the identity of the web server
• Easy to use internal chroot

functionality
• Audit log to log complete requests
• Debug log
• Smart enough to apply rules only to

dynamic resources

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 31

SANS@Night - Mod_Security

Mod_Security Benefits

• Provides Intrusion Prevention Gateway for
HTTP if used as a Reverse Proxy Server
– Malicious requests are not passed to production

hosts
• Can inspect ANY HTTP Client Request Header
• Uses Regular Expressions for rules
• Can quickly create new rules/filters to protect

Apache until patches are released
– Chunking Exploit
SecFilterSelective HTTP_TRANSFER_ENCODING “chunked”

 Discussion:
Mod_Security gives us many important features. One of the most important features is
that it gives us the ability to quickly implement new Filters to protect our Apache web
server (or any internal web server if we are using Apache as a Proxy Server!) when new
exploits are released. For example, when the Apache Chunking exploit was released, it
included information about what parameters the client could send to exploit this
vulnerability. Armed with this information, we can now edit the httpd.conf file and add
in new filters to protect our Apache servers until a new patch is available.

 If we add in the following Mod_Security directive:
SecFilterSelective HTTP_TRANSFER_ENCODING "chunked“
 We can deny any client requests that try to exploit this vulnerability. After
implementing this directive and trying to exploit this vulnerability, Mod_Security logs
the attack in the error_log with the following entry:

 [Sun Mar 30 18:27:29 2003] [error] [client 127.0.0.1] mod_security: Access
denied with code 403. Pattern match "chunked" at HEADER.

Slide 32

SANS@Night - Mod_Security

Installing Mod_Security

• Download archive
– http://www.modsecurity.org/download/mod_security-1.7.2.tar.gz

• Place the mod_security.c file into your
Apache modules directory
– /path/to/apache_1.3.29/src/modules/

standard/
• Compile Apache with mod_security
• Update the httpd.conf file

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 33

SANS@Night - Mod_Security

Install Mod_Security Module
pwd

/install/apache_1.3.29

#./configure --prefix=/var/www \

--activate-module=src/modules/standard/mod_security.c \

--enable-module=security \

--enable-module=proxy \

--enable-module=rewrite \

--enable-module=auth_digest \

--enable-module=vhost_alias \

--enable-module=headers \

--disable-module=autoindex \

--disable-module=info \

--disable-module=status \

--disable-module=userdir

 Discussion:
After compiling the Apache source to include the mod_security module, we execute the
httpd binary with the “-l” flag to display which modules are compiled into the binary.

Slide 34

SANS@Night - Mod_Security

Verify Mod_Security Module

pwd

/var/www/bin

./httpd -l

Compiled-in modules:

http_core.c

mod_env.c

mod_so.c

--CUT--

mod_setenvif.c

mod_rewrite.c

mod_security.c

Action: Execute the following commands:

 Discussion:
After compiling the Apache source to include the mod_security module, we execute the
httpd binary with the “-l” flag to display which modules are compiled into the binary.

Slide 35

SANS@Night - Mod_Security

Hands On: IfModule

<IfModule mod_security.c>

SecFilterEngine On

SecAuditEngine On

SecAuditLog logs/audit_log

SecFilterDebugLog logs/modsec_debug_log

SecFilterDebugLevel 3

SecFilterDefaultAction deny,log,status:403

SecFilter "\.\./“

SecFilter "<(.|\n)+>

SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$“

SecFilterSelective POST_PAYLOAD "!image/(jpeg|bmp|gif)“

-- CUT --

</IfModule>

Action: Edit/Verify the httpd.conf file and check for the following lines:

 Discussion:
We will not give a brief explanation of these Mod_Security directives:
SecFilterEngine On - Turn the Mod_Security filtering engine On or Off
SecAuditEngine On - The audit engine works independently and can be turned On of
Off on the per-server or on the per-directory basis
SecAuditLog logs/audit_log - The name and location of the audit log file
SecFilterDebugLog logs/modsec_debug_log – This is the new debugging log file. This
file is useful when testing new Mod_Security rulesets.
SecFilterDebugLevel 4 – This sets the debug level of Mod_Security. Levels are 1 –9.
SecFilterDefaultAction deny,log,status:403 – This line specifies the default action to
take when Mod_Security finds a match. This line translates to: Deny the connection
attempt, log the connection information and return a 403 – Forbidden status code to the
client. This feature is interesting in that you can actually specify any HTTP status code
you wish. This behavior can wreak havoc on Vulnerability Scanners!
SecFilter "\.\./“ – Prevents directory traversal attacks.
SecFilter "<(.|\n)+> - Prevent XSS attacks (HTML/Javascript injection)
SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$“ - Require
HTTP_USER_AGENT and HTTP_HOST headers
SecFilterSelective POST_PAYLOAD "!image/(jpeg|bmp|gif)“ - When allowing file
uploads, only allow images. Note that this is not foolproof, a determined attacker could
get around this by inserting hidden html tags.

Slide 36

SANS@Night - Mod_Security

Mod_Security + Snort Signatures = Mod_Snort?

• Snort has several Web Attack Signature files
– web-attack-responses.rules
– web-client.rules
– web-iis.rules
– web-attacks.rules
– web-coldfusion.rules
– web-misc.rules
– web-cgi.rules
– web-frontpage.rules
– web-php.rules

• Can’t we use these signatures somehow???

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 37

SANS@Night - Mod_Security

Snort2modsec.pl

• I wanted a script that would translate snort’s
web attack files into mod_security’s syntax

• This would help to automate the updating of
IDS rules into mod_security

• I initially found a PERL script for the Zeus
web server that basically did what I needed:
sniff-snort.pl

• Mod_Security creator then updated it for our
use

• ./snort2modsec.pl web-attacks.rules
> mod_security.rules

http://www.modsecurity.org/documentation/snort2modsec.pl

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 38

SANS@Night - Mod_Security

Normal Snort Web Attack Rules

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-

MISC Cisco IOS HTTP configuration attempt"; uricontent:

"/level/*/exec/"; regex; flags:A+; classtype: web-appl

ication-attack; reference:bugtraq,2936; sid:1250; rev:3;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-

MISC Netscape Enterprise directory listing attempt";

content:"INDEX "; offset:0; depth:6; flags:A+;

reference: cve,CAN-2001-0250; reference:bugtraq,2285;

classtype:web-application-attack; sid:1048; rev:4;)

 Discussion:
 We want to leverage the outstanding Snort signature files, which are continually
updated by the dedicated Snort user community, by implementing these into our
Mod_Security module. We can rely on new Snort signature files to supply us with
updated Web Attack signatures. This screen shows the normal Snort attack signature file
entry format. We are interested in the “uricontent” portion of the signatures. We will
need to extract these content sections from the Snort signatures and translate them into
our Mod_Security format. After extracting the appropriate information from the various
“WEB” attack Snort signature files, we have a Mod_Security signature file with 373
signatures!

Slide 39

SANS@Night - Mod_Security

Mod_Security Snort Directives

WEB-ATTACKS ps command attempt

SecFilterSelective THE_REQUEST "/bin/ps"

WEB-ATTACKS wget command attempt

SecFilter "wget\x20"

WEB-ATTACKS uname -a command attempt

SecFilter "uname\x20-a"

WEB-MISC Nessus 404 probe

SecFilterSelective THE_REQUEST "/nessus_is_probing_you_"

WEB-MISC Netscape admin passwd

SecFilterSelective THE_REQUEST "/admin-serv/config/admpw“

WEB-MISC BigBrother access

SecFilterSelective THE_REQUEST "/bb-hostsvc\.sh\?HOSTSVC“

WEB-MISC ftp.pl attempt

SecFilterSelective THE_REQUEST "/ftp\.pl\?dir=\.\./\.\."

--CUT--

 Discussion:
 These entries use Regular Expression matching. CAUTION – You might have to escape meta-
characters or else Apache will complain and might SegFault. For instance, the final entry on the slide
shows how I had to escape the “+” signs with back-slashes. The URL Requests will be inspected, and if
the alert signature between the “” is found anywhere in the request it is acted upon. The SecFilter directive
tells Mod_Security that you want to look for the text strings within the the URL Request line only. If you
want to create attack signatures for other portions of the client request headers, you will need to use the
SecFilterSelective Variable names are the same as in mod_rewrite. Some variables have special prefixes
that tell the module where to look for values but prefixes are stripped before looking variables up:
HTTP_header for headers
ENV_variable for environment
ARG_variable for URL argument
Variables special to mod_security are:
ARGS - filter arguments, either QUERY_STRING or POST_PAYLOAD
ARGS_NAMES - variable names only
ARGS_VALUES - variable values only
POST_PAYLOD - as the name says
Other supported variables are:
REMOTE_ADDR
REMOTE_HOST
REMOTE_USER
REMOTE_IDENT
REQUEST_METHOD
SCRIPT_FILENAME

Slide 40

SANS@Night - Mod_Security

Example Mod_Security AuditLog Entry
tail /var/www/logs/error_log

[Sun Mar 23 18:35:16 2003] [error] [client 192.168.1.100] mod_security:

Access denied with code 403. Pattern match "/store.cgi" at THE_REQUEST.

tail –17 /var/www/logs/audit_log
==

Request: 192.168.1.100 - - [Sun Mar 23 17:59:26 2003] "GET /cgi-bin/

printenv HTTP/1.1" 200 1043

Handler: cgi-script

--

GET /cgi-bin/printenv HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application

/vnd.ms-powerpoint, application/vnd.ms-excel, application/msword, */*

Accept-Encoding: gzip, deflate

Accept-Language: en-us

Connection: Keep-Alive

Host: 192.168.1.101

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

 Discussion:
 This slide shows an excerpt from the Mod_Security audit_log file. If configured,
Mod_Security will capture and store both the client and server headers and the data
payload of dynamic content requests – I.E.- CGI scripts and POST requests. This data
can prove to be tremendously useful when investigating Web Attacks.

Slide 41

SANS@Night - Mod_Security

Mod_Security Tests

pwd

/tools/mod_security-1.7.1/tests

cat 08-invalid-url-encoding-in-parameters.test

08 Invalid URI encoding in parameters

#

These will be decoded by mod_security itself

#

GET /cgi-bin/modsec-test.pl?file=%ZZ HTTP/1.0

 Discussion:
 This slide shows an excerpt from the Mod_Security audit_log file. If configured,
Mod_Security will capture and store both the client and server headers and the data
payload of dynamic content requests – I.E.- CGI scripts and POST requests. This data
can prove to be tremendously useful when investigating Web Attacks.

Slide 42

SANS@Night - Mod_Security

Mod_Security Tests

./run-test.pl 192.168.145.100 0*.test

Test "01 Simple keyword filter": Failed (status = 400)

Test "02 Self referencing directories": Failed (status = 400)

Test "03 Evasion via path traversal": Failed (status = 403)

Test "04 Evasion via a double slash in the path": Failed (status

= 400)

Test "05 Mixed case addresses": Failed (status = 400)

Test "06 Evasion via URL encoding": Failed (status = 400)

Test "07 Special characters in the path": Failed (status = 400)

Test "08 Invalid URI encoding in parameters": Failed (status =

400)

Test "09 Directory traversal in parameters": Failed (status =

400)

 Discussion:
 This slide shows an excerpt from the Mod_Security audit_log file. If configured,
Mod_Security will capture and store both the client and server headers and the data
payload of dynamic content requests – I.E.- CGI scripts and POST requests. This data
can prove to be tremendously useful when investigating Web Attacks.

Slide 43

SANS@Night - Mod_Security

Mod_Security
Vs.

Whisker

Vulnerability Scanners

This space intentionally left blank.

Slide 44

SANS@Night - Mod_Security

Vulnerability Scanners

http://packetstormsecurity.org.pk/papers/IDS/whiskerids.html

•Applications created to automate
the process of scanning hosts for
known vulnerabilities

–Whisker

–Nessus

–ISS Security Scanner

–SATAN

•Originally created by Security
Admins to assist with securing
their own networks and hosts

•Hacker community uses these
same tools to conduct their own
“Security Audits”

Discussion:
Vulnerability Scanners are applications that were originally created to assist security
personnel with auditing their own hosts and networks. It didn't take long, however, for
the hacker community to get their hands on these same tools and conduct "Security
Audits" of their own. These tools are designed to access a selected host(s) and look for a
set list of vulnerabilities. The best of these scanners are: NESSUS, ISS Security Scanner
and Whisker.

Slide 45

SANS@Night - Mod_Security

Determining Apache
Version

Apache Version Recon

This space intentionally left blank.

Slide 46

SANS@Night - Mod_Security

HTTP Response
Headers: Demo

Apache Version Recon

Discussion:
By connecting to port 80 on the target host using either telnet or netcat, an attacker can
issue an HTTP "HEAD" request to identify the web server software from the response
header. In the demo connection above, the “Server:” line shows that this host is using
Apache/1.3.12. With this information, an attacker can search various hacker sites for any
known vulnerabilities or exploits for this version of web server software.

Slide 47

SANS@Night - Mod_Security

Example – Whisker’s Light Fingerprinting

now do some light fingerprinting...

-- CUT --

my $Aflag=0;

$req{whisker}->{uri}='//';

if(!_do_request(\%req,\%G_RESP)){

_d_response(\%G_RESP);

if($G_RESP{whisker}->{code}==200){

$req{whisker}->{uri}='/%2f';

if(!_do_request(\%req,\%G_RESP)){

_d_response(\%G_RESP);

$Aflag++ if($G_RESP{whisker}-
>{code}==404);

} } }

m_re_banner('Apache',$Aflag);

Discussion:
This slide shows some sample code taken from Whisker 2.1’s main.test file. This file
runs specific “pre-test” to help set up the remainder of the scans. Here is some comments
from within the main.test file:
 #
 # The preserver test is very special and important--first, it handles
 # the checking for custom 404 pages, and configures whisker to
 # respond appropriately (the values it sets are used by the internal
 # d_response in order to manipulate the result). Secondly, it
 # fingerprints the server and adjusts the server banner accordingly,
 # which could change how all future tests are ran: hence, it needs
 # to be the first thing ran.
 #

The section of code in the slide runs two tests to determine if the target web server is in
fact an Apache server, regardless of what the Banner might report. The first request is a
“GET //” and if the HTTP Status Code is a 200, then the next request is sent. The second
request is “GET/%2f”, which is URI Encoded – and translates to “GET //”. This time
Apache returns a 404 – Not Found error code. Other webservers – IIS – do not return the
same status codes for these requests.

Slide 48

SANS@Night - Mod_Security

Example – Whisker’s Light Fingerprinting

--

Title: Server banner

Id: 100

Severity: Informational

The server returned the following banner:

Microsoft-IIS/4.0

Title: Alternate server type

Id: 103

Severity: Informational

Testing has identified the server might be a 'Apache' server. This

Change could be due to the server not correctly identifying itself (the

Admins changed the banner). Tests will now check for this server type

as well as the previously identified server types.

Discussion:
We have just ran a whisker scan and it is telling us, based on the pre-tests that this web
server may in fact be an Apache server. Not only does this alert the attacker, but Whisker
will also add in all of the Apache tests during its scan.

Slide 49

SANS@Night - Mod_Security

Alter the Apache Banner
•Traditionally, in order to modify the HTTP
Response “Server” token you either had to:

•Edit the uncompiled source code, or
•Edit the compiled binary with an editor

•Mod_Security has a directive so you can set
this in the httpd.conf file
•Changing the Banner does NOT make your
system more secure!

•If your Apache version is vulnerable to an
exploit, changing the banner will not fix this
•It will, however, confuse Script Kiddies and
automated worms that trigger on the banner

Discussion:
It is possible to edit out and/or alter (for deception purposes) the "Server" field
information displayed by a web server's response headers. In order to accomplish this
task, the web server configuration file that contains the server version information must
be edited.

IMPORTANT:
There has been much debate in Apache circles as to the amount of protection that can be
gained by changing the http Server: token information. While altering the banner info
alone, and not taking any other steps to hide the software version, probably doesn't
provide much protection from REAL people who are actively conducting reconnaissance,
it does help with regards to blocking automated WORM programs. Due to the increase in
popularity of using worms to mass infect systems, this method of protecting your web
servers becomes vital. This step could certainly buy organizations some time during the
patching phase when new worms are released into the wild and they are configured to
attack systems based on the server token response.

Slide 50

SANS@Night - Mod_Security

Apache-ssl-bug.c Code
if ((arch == -1) || (arch >= MAX_ARCH)){

DEBUG("Checking version");
if (strncmp(a,"Apache",6)){

printf("The web server is not Apache\n\n");
return 1;

**
./apache-ssl-bug -t 0 192.168.145.100

Apache & OpenSSL 0.9.6 Exploit
Made by andy^ after the bugtraq.c worm

Trying to exploit 192.168.145.100
The web server is not Apache
FAILED

http://packetstormsecurity.nl/0209-exploits/apache-ssl-bug.c

Discussion:
This slide shows some excerpts from the apache-ssl-bug source code, which was found
on the Packetstorm Web Ste. This section of code shows where the Worm actually
inspects the response headers from the target web server and if it does not contain the
string “Apache” then it exits. I then show an example of running the tool.

Slide 51

SANS@Night - Mod_Security

Edit the Server Banner Code
• Change the banner information provided in

response to a HTTP requests
• The server banner can help an attacker to

determine what exploits will work against your
server version

• What should we change it to?
– IIS
– iPlanet

• Why not just remove the Server: header?
– No server banner = Apache version or ServerMask

• Set value in httpd.conf
SecServerSignature “My-Server/1.0”

Discussion:
We want to remove/modify the default HTTP Response Header parameter for the “Server:” token to hide
the identity of our web server software. In order to exploit any potential weaknesses of a web server, an
attacker must first identify the target’s web server software. By connecting to port 80 on the target host
using either telnet or netcat, an attacker can issue an HTTP “HEAD” request to identify the web server
software from the response header.
IMPORTANT – Consult your legal department for verification of legal issues involved with changing
your web server HTTP Response Header info. Private Sector and Government Agencies have different
standards concerning public release of information. It has been debated in legal circles if altering this
parameter constitutes “Lying” to the public about which web server software you are using. You should
refer to the Request for Comment (RFC #2616) for HTTP 1.1 protocol and read the following section
concerning the SERVER header info:
14.38 Server
The Server response-header field contains information about the software used by the origin server to
handle the request. The field can contain multiple product tokens (section 3.8) and comments identifying
the server and any significant subproducts. The product tokens are listed in order of their significance for
identifying the application. Server = "Server" ":" 1*(product | comment)
 Example: Server: CERN/3.0 libwww/2.17
If the response is being forwarded through a proxy, the proxy application MUST NOT modify the Server
response-header. Instead, it SHOULD include a Via field (as described in section 14.45).
Note: Revealing the specific software version of the server might allow the server machine to become
more vulnerable to attacks against software that is known to contain security holes. Server
implementers are encouraged to make this field a configurable option.
The full RFC 2616 document is located at the World Wide Web Consortium web site. Legal Counsel will
want to justify the security vulnerability associated with not altering this information. Most Legal
departments should approve this security measure as “Mis-Information” to protect web assets. You can
pick the name of any web server software.

Slide 52

SANS@Night - Mod_Security

SecServerSignature:
Demo

Update Server Banner

Discussion:
By connecting to port 80 on the target host using either telnet or netcat, an attacker can
issue an HTTP "HEAD" request to identify the web server software from the response
header. In the demo connection above, the “Server:” line shows that this host is using
Apache/1.3.12. With this information, an attacker can search various hacker sites for any
known vulnerabilities or exploits for this version of web server software.

Slide 53

SANS@Night - Mod_Security

Hands On: Edit the Server Banner Code

pwd

/var/www/conf

cp httpd.conf httpd.conf.orig

vi httpd.conf

diff httpd.conf httpd.conf.orig

229c229

< SecServerSignature "My-Server/1.0"

>

Action: Execute the following commands to edit the Server
Banner Token Information

Discussion:
Before we edit the contents of the httpd.conf file, we make a backup copy in case
anything goes wrong with our editing. We then use vi to edit the file and change the
SecServerSignature setting to “My-Server/1.0”. We then use diff to show the updated
section of code.

Slide 54

SANS@Night - Mod_Security

Checking the Server Banner Code
telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 10 Mar 2003 19:30:23 GMT

Server: My-Server/1.0

Accept-Ranges: bytes

Content-Length: 98

Connection: close

Content-Type: text/html; charset=ISO-8859-1

Discussion:
In this slide, we connect to the localhost web server and inspect the new “Server” banner
displayed by Mod_Security.

Slide 55

SANS@Night - Mod_Security

Whisker Scanning

• Whisker can do a “smart” scan to
reduce the network/log noise associated
with kitchen-sink scanning

• It will scan parent directories prior to
searching for files

• You can update the main.test file to
scan multiple directories
– /cgi-local, /cgi, /cgibin, etc…

Discussion:
In order to catch a wider array of vulnerability scans run against our web server, we can use SecFilter
directives to list common files and directories which are targeted by tools such as Whisker. This has the
benefit of being able to catch vulnerability scanners without filling up your cgi-bin with the fake CGIs.
This directive entry can act as another crude IDS database of attack signatures. Remember that the
SecFilter directive uses Regular Expressions to match the listings. This provides added flexibility,
however, care should be taken when listing files to have the desired effect. If this directive is working
properly, Apache will redirect all requests for the files listed here to our 400 CGI script. We will then be
notified of this connection attempt and can quickly correlate data to identify what type of vulnerability scan
is being run. This technique is extremely effective at identifying attacks from tools such as Whisker, which
will check for the existence of a directory prior to requesting files within that directory. Here is an excerpt
from the Whisker README file:
1. /cgi-bin is pretty damn common, I'll give you that. But I've also
been on many a hosting provider that used /cgi-local. And I've seen
people use /cgi, /cgibin, etc. Fact of the matter is that it could
also be /~user/cgi-bin, or /~user/cgis, etc. Then there's some scripts
that are all over the place, like wwwboard, which may or may not have
it's own directory.
Point of the point: wouldn't it be nice to define multiple
directories?
2. You know what really irks me? Seeing a CGI scanner thrash around
through /cgi-bin or whatnot, when /cgi-bin doesn't even exist. Talk
about noisy in the logs. Now, if we waste a brain cell, we can see
that if we query the /cgi-bin directory (by itself), we'll get a 200
(ok), 403 (forbidden), or 302 (for custom error pages) if it exists, or
a 404 if it doesn't. Wow. So if we just do a quick check on /cgi-bin,
and get a 404, we can save our however many /cgi-bin CGI checks we were
going to make. That could save you 65 entries in the httpd logs.
Point of the point: save noise/time by querying parent dirs

By denying access to these directories, we are able to catch stealth scans such as Whisker.

Slide 56

SANS@Night - Mod_Security

Whisker main.test File

sub m_dir_driller{

my @temp=warray('spider');

my @general=qw(

temp prv source backup

bak old db lib

inc include dat data

test save tmp archive

);

--CUT--

Whisker scans for common subdirectories in already-existing

Directories found while spidering the website. The finding of a

directory does not immediately signal a problem; rather, you

should go back and review the contents of each found URL to

determine if there is any sensitive material in those

directories.

 Discussion:
This slide shows a small section of Whisker’s main.test file. If you look at the entries
listed, they show which files will be searched for an a target host. There are literally
hundreds of known vulnerable scripts and files that are available on Web Servers, not just
Apache. It is important to note, most Web Vulnerability Scanners function in the same
basic way. They all search a web server for a list of files and report back if the files
exists. If the web server sends an HTTP status code of 200, then this file does exist. The
attacker will then review the results from the vulnerability scan looking for exploitable
files/scripts/applications. Once these files are identified, then the attacker will actually
conduct an exploit attack.

 Due to the fact that these Vulnerability Scans normally happen during the
“Reconnaissance” Phase of a Web Attack, which precedes the “Exploit” Phase, it is
crucial that we have some sort of alerting mechanisms in place to identify these
scans.

Slide 57

SANS@Night - Mod_Security

Fake Directories - Honeypot Mentality

•Cuts down on data overload normally
associated with reviewing Web Server log
files looking for malicious attempts
•Virtually no “False Positives”
•No one should ever be accessing these
directories or scripts
•Access attempts for any of our fake
directories are suspect by nature

http://www.tracking-hackers.com/misc/faq.html

Discussion:
Our use of Mod_Security adheres to the Honeypot security methodology. Here are some excerpts from
Lance Spitzner’s honeypot web site:
Detection
While honeypots add little value to prevention, I feel they add extensive value to detection. For many
organizations, it is extremely difficult to detect attacks. Often organizations are so overwhelmed with
production activity, such as gigabytes of system logging, that it can be extremely difficult to detect when a
system is attacked, or even when successfully compromised. Intrusion Detection Systems (IDS) are one
solution designed for detecting attacks. However, IDS administrators can be overwhelmed with false
positives. False positives are alerts that were generated when the sensor recognized the configured
signature of an "attack", but in reality was just valid traffic. The problem here is that system administrators
may receive so many alerts on a daily basis that they cannot respond to all of them. Also, they often
become conditioned to ignore these false positive alerts as they come in day after day, similar to the story
of "the boy who cried wolf". The very IDS sensors that they were depending on to alert them to attacks can
become ineffective unless these false positives are reduced. This does not mean that honeypots will never
have false positives, only that they will be dramatically fewer than with most IDS implementations.

Honeypots can simplify the detection process. Since honeypots have no production activity, all connections
to and from the honeypot are suspect by nature. By definition, anytime a connection is made to your
honeypot, this is most likely an unauthorized probe, scan, or attack. Anytime the honeypot initiates a
connection, this most likely means the system was successfully compromised. This helps reduce both false
positives and false negatives greatly simplifying the detection process. By no means should honeypots
replace your IDS systems or be your sole method of detection. However, they can be a powerful tool to
complement your detection capabilities.

Slide 58

SANS@Night - Mod_Security

Foiling Vulnerability Scanners

•Create Mod_Security Directives to catch
requests to these directories
•You must make sure that there are no
False Positives! You do not want to deny
accesses to legitimate directories

SecFilter “/(bak|backup|archive|
scripts|cgi-ocal|htbin|cgibin|cgis|cgi
|win-cgi |cgi-win)/”

Discussion:
To effectively identify vulnerability scanner attacks, we can implement Mod_Security
directives to catch attempts to access common directories listed from Whisker.

Slide 59

SANS@Night - Mod_Security

Accessing
OS Commands

Accessing OS Commands

This page intentionally left blank.

Slide 60

SANS@Night - Mod_Security

Accessing OS Commands

•If I can find a CGI program that is
vulnerable, I might be able to trick it into
accessing some system utilities such as
“ls” and “cat”

•By accessing these system tools, I am
able to gain further information about the
system such as

•Contents of files

•Directory Structures

•Who is on the systems

Discussion:
Nearly every programming language allows the use of so called "system-commands", and
many applications make use of this type of functionality. System-interfaces in
programming and scripting languages pass input (commands) to the underlying operating
system. The operating system executes the given input and returns its output to stdout
along with various return-codes to the application such as successful, not successful etc.
System commands can be a very convenient feature, which with little effort can be
integrated into a web-application. Common usage for these commands in web
applications are filehandling (remove,copy), sending emails and calling operating system
tools to modify the applications input and output in various ways (filters).
Depending on the scripting or programming language and the operating-system it is
possible to:
Alter system commands
Alter parameters passed to system commands
Execute additional commands and OS command line tools.
Execute additional commands within executed command

Slide 61

SANS@Night - Mod_Security

Accessing OS Commands

This slide shows an example vulnerable CGI script (PHF), where the attacker was able to
gain access to the /etc/passwd file. There are many overlapping layers of security which
could have prevented this issue. The issue we are focusing on at this stage is the ability
of the Apache web server to access and use certain OS level commands. In this case, if
you look at the URL field, you can see that the PHF script accessed the /bin/cat
command.

How can we prevent this from happening? We can restrict the ability of the Apache web
server from accessing these commands.

Slide 62

SANS@Night - Mod_Security

Disallow Directory Access

• Use Snort rules (earlier)
• Disallow access to OS
level binaries/directories

SecFilter
“/(etc|bin|sbin|tmp|var|opt|dev|kernel)/”

Discussion:
Here we create a Mod_Security directive to identify access attempts to common OS level
directories.

Slide 63

SANS@Night - Mod_Security

Directory Access AuditLog Entry
==

Request: 192.168.145.1 - - [Wed Oct 29 11:29:18 2003] "GET /autoh

tml.php?op=modload&mainfile=x&name=/etc/passwd HTTP/1.1" 403 741

Handler: cgi-script

--

GET /autohtml.php?op=modload&mainfile=x&name=/etc/passwd HTTP/1.1

Connection: Close

Content-Length: 0

Host: 192.168.145.100

User-Agent: Mozilla/4.75 (Nikto/1.30)

mod_security-message: Access denied with code 403. Pattern match
"/(etc|bin|sbin|tmp|var|opt|dev|kernel)/" at THE_REQUEST.

mod_security-action: 403

--CUT--

==

 Discussion:
 This slide shows an excerpt from the Mod_Security audit_log file. If configured
correctly, Mod_Security will capture and store both the client and server headers and the
data payload of requests. This data can prove to be tremendously useful when
investigating Web Attacks.

Slide 64

SANS@Night - Mod_Security

URL Manipulation

• HTTP Request Manipulation
• Can send unacceptable Meta-

Characters in the URL
Request line and Client
Headers
– Directory Traversal
– OS Command Execution

• The goal is to trick the Web
Server into executing these
un-intended commands

Discussion:
An attacker will commonly try to issue HTTP requests that are formatted appropriately to
execute system commands that were not intended for use by the Web Server.

Slide 65

SANS@Night - Mod_Security

URL Attack Signatures
• Directory Traversal – “.”, “..”, “…”
http://host/cgi-bin/lame.cgi?file=../../../../etc/motd

• Hex Value – “%20” Space, “%00” Null Requests
http://host/cgi-bin/lame.cgi?page%00=ls%20-al|

• Pipe Request – “|”
http://host/cgi-bin/lame.cgi?page=ps%20-ef|grep%20root

• Semi-Colon Requests – “;”
http://host/cgi-bin/lame.cgi?page=id;uname%20-a

• Redirect Requests – “<“, “>”, “>>”
http://host/cgi-gi?page=echo%20”You’re%200wned”>index.htm

• System Commands – “ls”, “echo”, “cat”, “tftp”, “ps”
http://host/cgi-bin/bad.cgi?doh=ps%20-aux

http://www.cgisecurity.com/papers/fingerprint-port80.txt

 Discussion:
This section has examples of common fingerprints used in exploitation of both web
applications, and web servers. This section is not supposed to show you every possible
fingerprint, but instead show you the majority of what exploits and attacks will look like.
These signatures should pick up most of the known and unknown holes an attacker may
use against you. This section also describes what each signature is used for, or how it
may be used in an attack.

Slide 66

SANS@Night - Mod_Security

Disallow Meta-Characters
• Define our Secfilter Rule to ONLY allow
acceptable characters

•Upper/Lowercase Letters

•Numbers

•Forward Slash

•Period

•Dash

•UnderScore

SecFilter “[^a-zA-Z0-9|\.|\/|_|\-]”

Discussion:
The concept is to implement a security layer that will validate ALL HTTP requests sent to a Web Server.
This layer should be able to read packet payloads and effectively terminate all TCP connections that are
contain unacceptable characters.

We want to use Mod_Security to inspect all of the incoming client HTTP Requests. We will define a rule
set which will only allow ACCEPTABLE characters. This takes a proactive approach, as opposed to
normal Intrusion Detection where the IDS uses an attack signature database of FORBIDDEN actions.
This concept is based on a similar mindset to the Access Control mechanisms of TCP-Wrappers
(ftp://ftp.porcupine.org/pub/security/tcp_wrapper.txt.Z). TCP-Wrappers controls access to services by
utilizing two files - hosts.allow and hosts.deny. These files restrict access based on "Where you are
coming from - IP Address or Hostname" and "What you want - Specified service I.E.- FTP." Since there is
a limited number of valid hosts who should be using FTP to access your server, it is easy enough to list
these IP's within the hosts.allow file and then simply add a line in the hosts.deny file that will deny
everyone else. This is a simple, yet effective, method of access control.

Now, imagine that we apply the current mentality of IDS technology to TCP-Wrappers. This would be
equivalent to having an empty hosts.allow file and then listing every single IP address that you don’t want
to FTP to your server in the hosts.deny file! That is shear madness, however, that is how most IDS
technologies work. Instead of listing what is acceptable (Valid HTTP Requests) on the network, the IDS'
are specifying what is not allowed (i.e. - Attack Signatures). With Mod_Security we can specify valid
HTTP characters and only allow these requests to be served by the Apache child process.

Slide 67

SANS@Night - Mod_Security

Searching for Vulnerable CGIs

• I can use a web scanner
such as Whisker to search
a target web server for
vulnerable CGI scripts

• Once the scanner has
identified a script, I can
then try to exploit it ☺

Discussion:
An attacker will commonly use a vulnerability scanner to automate the process of
locating vulnerable programs.

Slide 68

SANS@Night - Mod_Security

Whisker CGI Checks
--CUT--

wgeneral('/,cgi-bin','icat',id=>'2001',text=>$VAGUE);
wgeneral('@cgibin','flexform[@PERL]',id=>'2002');

wgeneral('@cgibin','LWGate[@PERL]',id=>'2003');
wgeneral('@cgibin','pu3.pl',id=>'2004',text=>$VAGUE);

wgeneral('@cgibin','meta.pl',id=>'2006',text=>$VAGUE);
wgeneral('@cgibin','webutils.pl',id=>'2008',text=>$VAGUE);

wgeneral('@cgibin','tigvote.cgi',id=>'2009',text=>$VAGUE);
wgeneral('@cgibin','webwho.pl',id=>'2011',text=>$VAGUE);

wgeneral('@cgibin','form[@PERL]',id=>'2012');
wgeneral('@cgibin','message.cgi',id=>'2013',text=>$VAGUE);

wgeneral('@cgibin','.fhp',id=>'2015',text=>$VAGUE);

wgeneral('@cgibin','htsearch[@PERL]',id=>'2017');

wgeneral('@cgibin','plusmail',id=>'2018',text=>$VAGUE
--CUT--

 Discussion:
This shows an excerpt from the Whisker main.test file and lists some of the CGI scripts it
will check.

Slide 69

SANS@Night - Mod_Security

Disallow Access to Non-Valid CGIs
• Define an inverted Secfilter Rule to ONLY
allow access to legitimate CGI scripts
• For example, say you only have 3
legitimate CGI scripts

•Script1.cgi

•Script2.cgi

•Script3.cgi

<Directory “/var/www/cgi-bin”>

SecFilter “!/(Script[1-3]\.cgi)”

Deny from all

</Directory>

Discussion:
Here we are using a similar approach to allowing only certain characters to be sent to our
web server. Instead of specifying individual characters, we specify individual files. This
is feasible since you will most likely only have a small number of valid CGI scripts.

Slide 70

SANS@Night - Mod_Security

Tracking Security Events

•Combining Mod_Security with CGI scripts for error pages
provides detailed email alerts for attacks

•Use custom CGI error pages for – 401/403 Status Codes

•The CGI scripts automate many important tasks
•Uses Environmental Variables from the printenv script – sends
this info to WebAdmin instead of to the client

•Issues HTML page to attacker with Warning Banner

•Notifies WebAdmin via Email

•Emails contain the following info:
•The CGI Environment Variables (Full Client HTTP Header Info)

•A URL hyperlink to immediately run a Traceroute and WHOIS on
the attacker's IP address.

Discussion:
SysAdmins need to keep tabs on all of these security related issues with their web
servers. To assist with this monitoring, the web server should be configured to use
custom CGI error response pages for 403 server response codes generated by
Mod_Security. The error pages are PERL CGI scripts that are initiated every time the
server issues either of these response codes. These scripts accomplish many important
tasks including issuing an html warning banner to the client and immediately sending an
e-mail notification to the SysAdmin. The e-mail message automates the process of
manually collecting security related session information from the web server access and
error logs for the request.

The hyperlink feature, within the e-mail message, is useful for tracking down the
appropriate "network abuse" contact personnel responsible for the attacker's IP
segment. While not every 403 message warrants these investigative actions, repeated
errors identified from a certain IP address should be handled appropriately. This CGI
alert e-mail system facilitates the prompt notification of proper personnel.

Slide 71

SANS@Night - Mod_Security

CGI Alerts Analysis

•Can determine if the alert was caused by a
Vulnerability Scanner or a Browser Request
•Number of emails received
•Time interval

–If requests/emails are rapid -> Scanner
–If requests/emails are sporadic -> Browser

•User Agent Field
–(Mozilla/4.7 [en] (Win95; U)) -> Netscape
–(Mozilla/4.0 (compatible; MSIE 5.01; Windows 98) -> IE
–Blank – “-” -> Scanner/Unknown Application

 Discussion:
 By examining these e-mail alerts, it is possible to determine if the attacker was
either conducting a vulnerability scan or trying to exploit the CGI scripts directly. Notice
the "User Agent" line from the e-mail message above? This information, taken from one
of the PERL CGI script's environmental variables, can aid in determining what
application triggered the script. Since this variable is blank, this attempt was most likely
executed by an automated script or application such as Whisker or ISS. If the "User
Agent" field had specified a browser such as, Netscape (Mozilla/4.7 [en] (Win95; U)) or
Internet Explorer (Mozilla/4.0 (compatible; MSIE 5.01; Windows 98), this would
indicate an attempt to exploit a vulnerable CGI script rather than conducting a
vulnerability scan. The final e-mail parameter to consider is the "Date Stamp." If these
five emails happen very rapidly, odds are an automated attack was executed. If
inconsistent delays are present between the access attempts ,odds are the attacker was
using a browser. These delays are indicative of manually typing in the URL information
into a browser. You will want to edit the information to be appropriate for your site.

Slide 72

SANS@Night - Mod_Security

403 CGI HTML Warning Page

Discussion:
This slide shows an example of the type of 403 error page which can be displayed by the
CGI scripts. You will notice that both a WARNING Banner and notice of session
logging are being displayed.

Slide 73

SANS@Night - Mod_Security

403 CGI Alert Email1

Discussion:
This email message shows an example of a 403 alert email message. Let’s take a moment to analyze this
HTTP session.
Since this email was generated by a 403 – Forbidden, the first thing to look at is “What was the URL
Request?”. This information is located on the REQUEST_URI line. In this email – the client requested the
following URL:/cgi-bin/formmail.pl?email=rockstar@mail.com&subject=www.companyx.com/cgi-
bin/formmail.pl&message=rockstar&recipient=ripo.one@verizon.net
 This is an obvious SPAM Relay search. The client is checking to see if our web server has a
Formmail.pl script which, if not configured correctly, could allow anyone to send email through our server.
These types of Open Spam Relays make it vastly more difficult to track down spammers.
Another interesting entry is the HTTP_USER_AGENT info. Most Spam Relay searching is conducted by
automated scripts – which do not provide any user agent info. This connection does contain user agent
information. It appears that the client was using a Microsoft 6.0 version of Internet Explorer. Could this
information be spoofed within a script/tool? Sure, however it is important to remember this concept – if the
user agent field is empty you can be sure that it was NOT a legitimate web browser.
The last interesting piece of info is the HTTP_VIA and HTTP_X_FORWARDED_FOR entries. We will
be discussing these HTTP headers further in the TRACE section, however it is sufficient to note that these
client headers indicate that this person is using a Squid Proxy server to connect to our web server. Does the
use of Proxy Servers always indicate malicious intent? No. In this case, however, it did. If we wanted to
try and track this person down, the HTTP_X_FORWARDED_FOR information comes into play. Lucky
for us, the Squid Proxy Server was configured to append this HTTP header, which gives us the REAL IP
address of the sender!

Slide 74

SANS@Night - Mod_Security

403 CGI Alert Email2

http://icat.nist.gov/icat.cfm?cvename=CVE-2000-1131

 Discussion:
 This email message shows an example of a 403 alert email message. Let’s take a
moment to analyze this HTTP session.
This email was sent because Mod_Security identified illegal characters in the Request
URI.
We specified our Mod_Rewrite Regular Expression to only allow acceptable characters:
SecFilter “[^a-zA-Z|0-9|\.|/|_|-]”
The client was trying to access a vulnerable CGI script named - /cgi-sys/guestbook.cgi
The client tried to trick the guestbook,cgi script into executing the “uname” OS command
by using the “|” pipe meta-character.

Slide 75

SANS@Night - Mod_Security

VisualRoute Website

Discussion:
This slide shows how the URL link within an email can be used to immediately run a
trace on the VisualRoute Web Site to locate the network block owners of an offending IP
address. In this case, we are using the IP address – 68.161.122.11 – which was identified
by the HTTP_X_FORWARDED_FOR client header from the previous slide. This IP
address appears to be a Verizon DSL home internet user based in New York. The
network block owners are Verizon and when we can click on the network owner’s name
on the screen, the VisualRoute application will run a WHOIS Domain Query for this
name and report back to contact information. Armed with this data, appropriate Security
Personnel could contact the owners.

What is interesting about running this trace is that if we did not have the
HTTP_X_FORWARDED_FOR information, we would have run a trace on the Proxy IP
address – 168.243.215.126 – instead. This IP address is located in Spain. That is quite a
big difference in location if we were starting an investigation! Always consider the use
of Proxy Servers when conducting a web investigation.

Slide 76

SANS@Night - Mod_Security

DShield.Org Website

Discussion:
This slide shows an example of using the Dshield.org hyperlink feature of the CGI alert
emails. The main advantage to using Dshield is that they are able to correlate data from a
vast amount of hosts. This provides a wider view of attacks and allows you to better
gauge the threat level presented to you.

In the example above, you can see that this client IP address has been up to no good – due
to the “Total Records against IP” number.

Slide 77

SANS@Night - Mod_Security

Mod_Security as a Reverse Proxy

• Single point of access
• Increased performance
• Network isolation
• Network topology hidden from the

outside world
• You can implement filters to

protect “vulnerable” web servers
–Until patches are available

http://www.securityfocus.com/infocus/1739

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 78

SANS@Night - Mod_Security

Reverse Proxy Architecture

Web
Client

10.0.1.2

Reverse Proxy with Mod_Security

19
2.

16
8.

7.
24

8
10

.0
.1

.1

10.0.1.3

IIS Web Server

Netscape-Enterprise

Discussion:
We will be discussing many of these common web vulnerabilities during the security
configuration steps of this presentation.

Slide 79

SANS@Night - Mod_Security

IIS Alert Email – Unicode Attempt

 Discussion:
 This email message shows an example of a 403 alert email message. Let’s take a
moment to analyze this HTTP session.
This email was generated by a NIMDA Worm Scan.
In this case, Mod_Security spotted this scan because we had specified a generic Directory
Traversal directive – SecFilter “\.\./”. This caught the NIMDA Scan since it sends
numerous requests trying to access cmd.exe by encoding Directory Traversal attempts.
Examples:
GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir
GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir
GET /_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir
Instead of specifying every individual signature for NIMDA, we can catch most of these
attacks by using our directory traversal signature.

Slide 80

SANS@Night - Mod_Security

IIS Alert Email – Code Red II Worm

 Discussion:
 This email message shows an example of a 403 alert email message generated by
Mod_Security. By inspecting this email alert, we can see that it was generated by a Code
Red II Worm Scan.
The HTTP_MOD_SECURITY_MESSAGE states that there are “Invalid characters
detected”. These characters are detected since Code Red uses them during infection of
IIS.
Mod_Security further states that there is “Invalid URI encoding”.

Slide 81

SANS@Night - Mod_Security

Final Thoughts
• No system is 100% secure
• Majority of attacks can be effectively deterred by

minimal security measures
• Consider the issues discussed and determine their

relevance to your environment
• Mod_Security is highlighted in the upcoming CIS

Apache Benchmark
• Thank you for your time
• Questions?
• Please fill out the SANS Class Evaluation!
• Send feedback to:

RCBarnett@Hushmail.com

 Discussion:
Unfortunately, no matter how many security measure are implemented, no system will
ever become 100% secure. There is an old security adage that addresses this fact: "The
only 100% Secure System, is the one that is not plugged into the network and is still in
it's cardboard box." A non-networked web server is counter productive since its sole
purpose is to allow clients access to information. The goal of all WebAdmins should be
to mitigate the associated risk involved with running a public web server. Since it is not
possible to completely secure an Internet system, WebAdmins need to formulate a plan to
both prevent and reduce the impact of a successful web site attacks. By taking
appropriate security measures, tremendous progress towards protecting web servers can
be made. Hopefully, the techniques outlined in this presentation will assist WebAdmins
to this end.

Please send all questions and feedback to the following email address:

 RCBarnett@hushmail.com

Thank you for your time and Good Luck with securing your Apache Web Servers!

Slide 82

SANS@Night - Mod_Security

Tools Demos

Open Audit Workshop

Discussion:
If time permits, we will have an Open Audit Workshop where you can run some
of the tools mentioned during the presentation.

